- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Kashyap, Amrit (2)
-
Keilholz, Shella (2)
-
Bolt, Taylor (1)
-
Chang, Catie (1)
-
Chen, J Jean (1)
-
Duyn, Jeff H (1)
-
Gold, Benjamin P (1)
-
Keilholz, Shella D (1)
-
Nomi, Jason S (1)
-
Picchioni, Dante (1)
-
Setton, Roni (1)
-
Spreng, R Nathan (1)
-
Uddin, Lucina Q (1)
-
Wang, Shiyu (1)
-
Yeo, B_T Thomas (1)
-
deBFrederick, Blaise (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Kashyap, Amrit; Keilholz, Shella (, Network Neuroscience)Author Summary Brain network models have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations with empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. In this manuscript, we extend this work by utilizing modern machine learning techniques to fit the brain network models to observed data and train on the mismatch between the model and observed signal. Our results show that our system training on these new metrics generalizes to a system that is able to reproduce trajectories and complex state transitions seen in rs-fMRI over the span of minutes. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity.more » « less
-
Kashyap, Amrit; Keilholz, Shella (, Network Neuroscience)Brain network models (BNMs) have become a promising theoretical framework for simulating signals that are representative of whole-brain activity such as resting-state fMRI. However, it has been difficult to compare the complex brain activity obtained from simulations to empirical data. Previous studies have used simple metrics to characterize coordination between regions such as functional connectivity. We extend this by applying various different dynamic analysis tools that are currently used to understand empirical resting-state fMRI (rs-fMRI) to the simulated data. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the brain network model. We conclude that the dynamic properties that explicitly examine patterns of signal as a function of time rather than spatial coordination between different brain regions in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole-brain activity.more » « less
An official website of the United States government
